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Nonlinear kink instabilities of high-Reynolds-number supersonic shear layers have 
been studied using high-resolution computer simulations with the piecewise-parabolic- 
method (PPM). The transition region between the two fluids of the shear layer is spread 
out over many computational zones to avoid numerical effects introduced on the 
smallest lengthscales. Mach number, density contrast, and perturbation speed and 
amplitude were varied to study their effects on the growth of the kink instabilities. In 
response to a perturbing sound wave, a travelling kink mode grows in amplitude until 
enough of a disturbance on the shear layer has been created for it to roll up and rapidly 
grow in thickness. The time it takes for this rapid growth to be initiated is proportional 
to the initial shear-layer thickness and increases for increasing Mach number or 
decreasing perturbation amplitude. For equal density, Mach 4 shear layers, perturbed 
by a sound wave with a 2 % amplitude at the travelling mode velocity, the growth time 
is T~ = (546 24) 6/c,  where c is the sound speed and 6 the half-width of the shear layer. 

1. Introduction 
The stability of a high-Mach-number slip surface (the interface between two fluids 

across which the parallel component of velocity, and possibly the density, change in 
value) is a fundamental problem of fluid mechanics that has been studied analytically 
using linear and weakly nonlinear stability analysis as well as through numerical 
simulations. The study reported below investigates the case of a shear layer where the 
transition region between the two fluids (which has no width for a slip surface) is given 
a finite thickness. By spreading out the shear layer over many zones in a numerical 
simulation the errors introduced on very small scales by the numerical method are 
avoided. Simulations of shear layers with various initial thicknesses, Mach numbers, 
perturbation amplitudes and density contrasts explore the behaviour of the nonlinear 
instabilities as a function of these parameters. 

Early analytical work (Miles 1957) found that a slip surface is linearly stable above 
a relative Mach number, M ,  of 22/2 (equal density case), but that there are linear 
resonances where the reflection coefficient for a sound wave incident on a slip surface 
has a vanishing denominator for three angles of incidence. (The relative Mach number 
is the velocity difference between the two fluids, urezative, divided by the sound speed, 
c.) For the equal density case, Miles found the phase velocity of these resonances to be 

(1) 
(for M > 2) and 
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(for M > 21/2). The velocities are given in a reference frame at rest in one of the fluids. 
Following the terminology of Artola & Majda (1987) we will refer to the first resonance 
as the zero mode and the other two resonances as the plus and minus travelling modes. 
For an unequal density slip surface, separating fluids 1 and 2, the zero mode moves at 
a velocity with respect to fluid 2 of 

- C2 'relative 

c1+ c2 
'Omode - (3) 

(Payne & Cohn 1985). The travelling modes move at a velocity with respect to fluid 2 
of vmOde, where vmOde is found from the following (Payne & Cohn 1985): 

This works out to v - , , ~ ~  z c,, z vrelative - cl. 
Numerical simulations using the piecewise-parabolic-method (PPM) of equal 

density slip surfaces at Mach numbers above the limit for linear instabilities revealed 
nonlinear instabilities that moved at the linear resonance velocity of the zero mode 
(Woodward 1985 ; Woodward et al. 1987; Woodward 1988). When the slip surface was 
disturbed by adding a sinusoidal perturbation to the component of the velocity normal 
to the slip surface, an instability formed consisting of a pair of shocks, one on each side 
of the slip surface (see the zero mode in figure 1 b). These shocks grew steadily stronger 
with time and slowly separated from each other. The shocks were associated with a pair 
of vortices and generated a mixing layer. 

Motivated by these numerical studies with PPM which revealed nonlinear 
instabilities on a slip surface for Mach numbers above the linear Kelvin-Helmholtz 
limit, Artola & Majda (1987, 1989a, b) extended the analytic description of slip surface 
instabilities to weakly nonlinear amplitudes. Using weakly nonlinear analysis for the 
response of a small-amplitude sound wave incident on a slip surface, they found that 
for M > 22/2 (equal density case) there is a nonlinear amplification of the incident 
sound wave amplitude from order 2 to order 6, with 6 < 1, for the three angles of 
incidence corresponding to the linear resonances (Artola & Majda 1987). In the weakly 
nonlinear regime these modes are kinks or bends in the slip surface bracketed by a 
shock and rarefaction wave, that travel along the slip surface and grow self-similarly 
in time. (See figure la.) These results quantify the behaviour seen in the numerical 
simulations. 

Further numerical simulations using PPM have been used to investigate the 
behaviour of the travelling kink modes, described by Artola & Majda, on a Mach 4 slip 
surface perturbed by an incident sound wave (Woodward et al. 1987; Pedelty & 
Woodward 1991). For a wide range of angles of incidence, a travelling mode was 
excited on a Mach 4, equal density slip surface, moving at 0.9 c & 0. l c  with respect to the 
zero mode. When the slip surface was perturbed by an incident sound wave with a 
phase velocity within c of the travelling mode velocity, the incident wave was strongly 
amplified upon reflection and transmission, producing a travelling kink mode which 
quickly grew to a large amplitude. Complicated structures then developed with many 
interacting travelling modes (moving in both directions), travelling along the slip 
surface at close to the speeds of the kink modes of Artola & Majda. 

The slip surfaces in the above numerical simulations are only a few computational 
zones wide. The numerical dissipation mechanisms of PPM strongly influence 
behaviour of structures less than a few zones in size. This brings up the question of how 
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FIGURE 1. Sketch of kink modes. This figure illustrates the structure of the plus, minus and zero modes 
in (a) the low-amplitude regime (analytical theory) and (b) high-amplitude regime (seen in numerical 
simulations). The two shocks on either side of the shear layer of the high-amplitude plus and minus 
travelling modes will be referred to as the inclined and normal shocks (denoted by subscripts Z and 
N ,  respectively). The normal shock is in the fluid in which the kink moves nearly sonically (hence the 
Mach angle is nearly 90') and the inclined shock is a stronger shock in the fluid with which the 
travelling kink mode has the greatest relative velocity. In the low-amplitude regime the velocities and 
angles are as follows: 

v, = 0 (reference frame chosen to be the zero mode rest frame), 

v+ = v ,  - c,, v- = v1 + c1 (see Q 1 for exact formulae), 
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much of the kink mode behaviour in the simulations is the result of these numerical 
effects. The analytical work of Artola & Majda confirms proper behaviour in the low- 
amplitude regime, but additional confirmation in the strongly nonlinear regime is 
sought here. Expanding the transition region between the two fluids into a shear layer 
resolves the area where the kinks are generated, so that the kink instabilities do not 
originate in regions of only a few zones. Thus, the possible effects of numerical errors 
are minimized. By conducting simulations with various shear-layer thickness, Mach 
numbers, perturbation amplitudes, and density contrasts, the dependence of basic 
shear-layer properties as a function of these initial conditions can be investigated. 

2. Numerical method and simulation parameters 
The shear-layer simulations were computed using PPM for an ideal gas with y = $. 

PPM is a second-order-accurate Godunov type scheme for solving the Euler equations. 
It updates the mass, momentum, and total energy (the conserved quantities) from the 
time averaged fluxes at each computational zone boundary. These fluxes are computed 
from the one-dimensional nonlinear Riemann problem for the interaction of two 
constant states. These constant states for each zone interface are chosen by taking the 
spatial average of the interpolated data over the domains of dependence. The 
interpolation consists of fitting a parabolic curve through the zone averaged data with 
the application of some constraints. A monotonicity constraint is applied in the area 
of shocks. A contact discontinuity steepener is also used in appropriate places. Multi- 
dimensional flow is computed by applying a symmetrized sequence of one-dimensional 
passes in each of the dimensions. (See Colella & Woodward 1984, Woodward & Colella 
1984 and Woodward 1986 for further details about PPM.) 

The flows which are studied here involve shocks, contact discontinuities and slip 
surfaces, and their interactions. The PPM numerical scheme has been specially 
designed to treat these flow discontinuities accurately while spreading them out over 
only one or two computational zones. The monotonicity constraints and upstream 
centring of the difference scheme through the use of Riemann solvers keeps the 
generation of false noise signals at these flow discontinuities to a minimum. This aspect 
of the PPM algorithm has been discussed and illustrated with test problems in 
Woodward & Colella (1984). 

The initial velocity and density profiles for the simulations are: 

P = fTY)  Pu + (1 - f ( Y ) )  PD ( 5  b) 

where f l y )  = 0.5(1 +tanh(y/6)), (5 c) 

and the subscripts u and 1 refer to the upper ( y  > 0) and lower ( y  < 0) fluids 
respectively. The x-axis is aligned with the shear layer and the y-axis is perpendicular 
to the shear layer. The simulations are conducted in a frame of reference moving at the 
zero mode velocity, so u, = ureZative c,/(c, + C J  and vL = - uTelative cZ(c, + q), where 
c,/~ = (ypo/pu/Z)1/2 and vrelative is the relative velocity between the upper and lower 
fluids. For the equal density case, pu = pZ = po. For the simulations with unequal 
densities, a density contrast of 10: 1 is used: pu = p,, and pZ = 0. lp,. A perturbing sound 
wave is introduced into the lower region by adding a sinusoidal disturbance of 
wavelength h in the appropriate Riemann invariant of either 1 YO or 5 YO in amplitude, 
with the wave crests at an angle Bpert to the shear layer (as in Pedelty & Woodward 
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1991). The perturbing wave is made finite in extent in the y-direction by multiplying its 
amplitude by exp ( ( ( y  + 36+ 3.25h)/1 .44h)2). The initial perturbation has a periodic 
length in the x-dimension of h/sin (@,,,,) and the crest of the wave will move across the 
shear layer with a phase velocity in the x-direction of c,/sin (tl,,,,) - v , ~ ~ ~ ~ ~ ~ ~  c,/(c, + c,) 
(in the zero mode or calculation frame of reference). Because of the periodicity in the 
perturbation, the simulation need only extend h/sin (Ope, , )  in the x-direction with 
periodic boundary conditions. The widths of the computational zones are constant in 
the x-direction. The widths of the computational zones in the y-direction are the same 
as in the x-direction for IyI < 6.5h. The widths of the zones increase exponentially 
beyond this point until y = k 24h where flow-out boundary conditions terminate the 
grid in the y-direction. Simulations with 6 = 0 and 0.03h have a resolution of 143 
computational zones per wavelength. All other simulations use 72 zones per 
wavelength. 

The amplitudes of the kink modes are measured by taking the Fourier transform in 
the x-direction of the pressure divided by p o  at y = k A, where p ,  is the undisturbed 
pressure. Since the waves do become nonlinear and often there is more than one wave 
present, the wave amplitude will be defined as the square root of the sum of the squares 
of the amplitudes of the first 10 harmonic wavenumbers, k = 2n/lPer to 2On/lp,,. 

The width of the shear layer, as used in this paper, is defined as the length over which 
the average x-velocity profile, v,, changes from 90% of V ,  at y = co to 90% of V, at 
y = - 00. More precisely, the width is y+goe,o -y-gooh, where 

and V, is the x-velocity averaged over the x-direction. The width of the shear layer 
defined in this way can thus increase owing to bending of the shear layer, which would 
spread out the average profile, or by widening of the shear layer across its entire length. 
The variable 6 refers to the half-width of the shear layer at a cut-off velocity of 76 YO. 

3. Development of a kink instability 
The response of a Mach 4,  equal density shear layer perturbed by an incident sound 

wave moving with a phase velocity matching the plus travelling kink mode velocity has 
the same general characteristics for shear layers with 6 ranging from 0.03h to 0.24h. 
The incident sound wave is reflected and transmitted, with the amplitudes of these 
reflected and transmitted waves increasing for smaller S (see $6). After the incident 
wave has finished interacting with the shear layer, the amplitude in both the upper and 
lower regions drops below that of the initial response as the initial plus travelling kink 
mode forms (see the wave amplitude at a scaled time of 0 in figure 2a) .  The kink mode 
then steadily increases in amplitude, saturating at an amplitude of about 0.4. While 
small in amplitude, the kink mode has the form of the weakly nonlinear travelling kink 
modes described by Artola & Majda, with an inclined shock on one side and a 
rarefaction, nearly normal to the shear layer, on the other, with the addition of a 
rarefaction downstream from the shock and a compression wave upstream from the 
rarefaction to straighten out the shear layer (see figures 1 b and 3a). As the plus kink 
mode grows in amplitude, the compression wave in front of the normal rarefaction 
steepens into a shock (see figure 3 b) .  (The two shocks on either side of the shear layer 
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FIGURE 2. Fourier amplitude at y = - h and shear-layer thickness. (a) displays the Fourier amplitude 
of the pressure divided by the initial pressure, measured at y = - h (showing the incident and reflected 
waves as well as the excited kink instabilities) for Mach 4, equal density shear layers with 6 ranging 
from 0 to 0.24h. (b) shows the shear layer thickness (as defined in $ 2 ) .  All times are scaled by 
(tc/h - 8)/(546S/h). For the slip surface simulation the 6 used to scale the time is 0.02h, the effective 
S of this simulation at time 8h/c. 

of the high-amplitude plus and minus travelling modes will be referred to as the 
inclined and normal shocks, respectively.) As the original kink instability grows in 
amplitude, multiple positive kink modes form. When the total amplitude of the 
travelling kink modes reaches about 0.3, a largescale twisting motion is induced on the 
shear layer exciting the zero mode and causing the shear layer to increase in size rapidly 
and be disrupted (see figures 2 b, 3 c and 3 d) .  
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FIGURE 3 .  Images of a Mach 4, equal density, 6 = 0.03h shear layer. The upper portion of each image 
shows the divergence of velocity (the negative compression) and the lower portions shows vorticity 
for a Mach 4, equal density, 6 = 0.03h shear layer perturbed at the plus mode velocity at times: (a) 
1 l.OA/c (low-amplitude plus mode); (b) 21.6hlc (high-amplitude plus mode); (c)  25.2hlc (at t,, rapid 
growth of shear layer begins); and ( d )  31.2hlc  (zero mode dominates). The grayscale values from 
white to black represent low to high values of divergence of velocity and vorticity. 

The behaviour of a Mach 4 equal density slip surface (a shear layer with 6 = 0) 
perturbed by a sound wave has been covered in detail in Pedelty & Woodward (1991). 
For this study, an additional high-resolution simulation of a Mach 4, equal density, 
6 = 0 shear layer perturbed at the plus kink mode velocity has been run for direct 
comparison with the shear-layer simulations. The Mach 4 slip surface has a much 
higher amplitude response with a large variety of kink modes generated very early by 
the incident wave (with velocities ranging from - 1 . 5 ~  to 1 .5~)  which quickly grow to 
amplitudes near 0.3. Both plus and minus travelling modes dominate at first. Strong 
zero modes dominate later when the large growth in shear-layer thickness occurs (see 
figure 4). This slip surface simulation forms a shear layer generated by numerical 
dissipation, and the interaction of the slip surface with the perturbing wave and the 
kink modes. At 8h/c, the time when the plus mode begins to grow in the shear-layer 
simulations, the effective 6 for this slip surface simulation is 0.02h or three 
computational zones (for a thickness of 6 zones). For the shear-layer simulations with 
6 equal to 0.03h and 0.06h the initial thickness (26) is 9 zones, which is apparently 
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FIGURE 4. Images of a Mach 4, equal density, slip surface. The upper portion of each image shows 
the divergence of velocity (the negative compression) and the lower portion shows vorticity for a 
Mach 4, equal density, slip surface (8 = 0) perturbed at the plus mode velocity at times: (a) 4.8h/c 
(early, but many modes present); (b) 10.0hlc (high-amplitude plus and minus modes); (c) 13.5hlc (at 
t,, rapid growth of shear layer begins); and ( d )  18.0hlc (zero mode dominates). The grayscale values 
from white to black represent low to high values of divergence of velocity and vorticity. 

enough resolution to eliminate the introduction of the minus kink modes present only 
in the slip surface simulation. 

When a perturbing wave with a phase velocity of the zero mode is incident on a 
Mach 4, equal density shear layer, a weak zero mode forms after the initial response, 
but does not grow in amplitude. The zero mode takes the form described by Artola & 
Majda except that two zero modes are present so that the shear layer is straightened 
out, making an alternating pattern of compressions and rarefactions. At time 25h/c the 
weak zero modes are replaced by a plus kink mode which grows in amplitude, 
following the evolution of the plus kink modes above. This kink mode grows to an 
amplitude of about 0.4 when a strong zero mode forms. Note that this shear layer 
perturbed by a sound wave moving at the zero mode velocity gives rise to only the 
travelling mode which has its inclined shock on the same side of the shear layer as the 
perturbing wave, the plus mode in this case. The minus mode is not excited. This 
indicates that the preferred mode to be excited on a shear layer perturbed by an 
incident wave with an arbitrary phase velocity is the travelling mode which has its 
inclined shock on the same side of the shear layer as the perturbing wave. 

A Mach 8 shear layer (see figure 5 )  behaves similarly to a Mach 4 shear layer, except 
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FIGURE 5. Images of a Mach 8, equal density, 6 = 0.06h shear layer. The upper portion of each image 
shows the divergence of velocity (the negative compression) and the lower portion shows vorticity for 
a Mach 8, equal density, 6 = 0.06h shear layer perturbed at the plus mode velocity at times: (a)  
80.0h/c (low-amplitude plus mode); (b)  96.0hlc (high-amplitude plus mode); ( c )  11 1.6h/c (at t,, rapid 
growth of shear layer begins); and (d )  140.0h/c (zero mode dominates). The grayscale values from 
white to black represent low to high values of divergence of velocity and vorticity. 

that the plus kink takes longer to grow strong. For a shear layer with a density contrast 
of 10 to 1 (see figure 6), the kink mode that dominates is the minus travelling kink mode 
which has its inclined shock in the fluid with the slower sound speed. This occurs even 
though initial perturbations are at the zero and plus mode velocities. When the shear 
layer is perturbed at the speed of the plus kink mode a plus kink mode with that same 
velocity is initially excited, but then gives way to the minus kink mode which grows in 
amplitude and triggers the growth of the shear layer (when its amplitude exceeds 0.2). 
After the shear layer begins to grow, the shocks from the kink modes move at a wide 
range of velocities but the minus mode is still dominant. When the shear layer is 
perturbed by an incident wave moving at the zero mode velocity, a weak zero mode 
initially forms which is replaced by a plus mode and then a minus mode which grows 
to large amplitudes. 

In summary, equal density shear layers perturbed by an incident sound wave are 
dominated by the travelling mode which has its inclined shock on the same side of the 
shear layer as the perturbing wave (the plus mode in these simulations). When this 
travelling mode reaches an amplitude of about 0.4 and generates enough vorticity to 
bend the shear layer significantly, a zero mode forms and dominates. Unequal density 
shear layers perturbed by an incident sound wave are, for a large density contrast, 
dominated by the travelling mode which has its inclined shock in the fluid with the 
smaller sound speed (the minus kink in these simulations). When an equal density shear 
layer is initialized with zero thickness (a slip surface), the response to the initial 
perturbation differs from that of a shear layer in that it contains both plus and minus 
travelling modes. After the travelling modes trigger zero mode growth, the behaviour 
matches that of the shear layers. 
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FIGURE 6. Images of a Mach 4, 10: 1 density, S = 0.06h shear layer. The upper portion of each image 
shows the divergence of velocity (the negative compression) and the lower portion shows vorticity for 
a Mach 4, 10: 1 density, S = 0.06h shear layer perturbed at the zero mode velocity at times: (a) 
30.0hlc (low-amplitude minus mode); (b) 36.5hlc (high-amplitude minus mode); (c) 43.0hlc (at t,, 
rapid growth of shear layer begins); and ( d )  55.OA/c. The less dense gas is at the bottom of each 
image. The fourth image shows the divergence of velocity to the right and the vorticity on the left for 
a larger area than the other three images. The grayscale values from white to black represent low to 
high values of divergence of velocity and vorticity. 

4. Growth of the shear layer 
For a given simulation, the shear layer width does not grow significantly until the 

amplitudes of the dominant kink modes exceed approximately 0.3, at which time the 
layer width grows rapidly (see figure 2b). The time that this rapid growth begins, 
referred to here as t,, marks the time when the shear layer is disrupted. Understanding 
how t ,  depends on the Mach number, initial shear layer thickness and density contrast 
across the shear layer will indicate how these factors influence the disruption of isolated 
shear layers. 

For Mach 4, equal density shear layers perturbed by a 1 % amplitude sound wave, 
with 6 ranging from 0.03h to 0.12h, the quantity ( t ,  - ti) c/6 averages to 546 f 25, where 
ti is the time when the initial perturbation has finished interacting with the shear layer 
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FIGURE 7. Growth time as a function of the initial 8. Each point represents the time that rapid growth 
of the shear layer begins, t,, as a function of the initial shear-layer thickness, 8 of each simulation (for 
the 10: 1 density shear layers the time is in terms of A / C ~ ~ ~ J .  Mach 4, equal density simulations are 
shown as squares. The Mach 8 simulation is an octagon. The Mach 4 10: 1 density simulations are 
crosses. The simulation with a 5 %  perturbation amplitude is a large square. The simulations 
represented by the solid square and the crosses are not perturbed at the dominant kink mode velocity. 
The dotted line shows the line: t, = 5468/c+ 8h/c.  

and the excited kink mode first appears. For the equal density simulations, ti = 8h/c 
and for 10: 1 density simulations ti = 3.5h/c,,,,,. Note that the resolution used in the 
simulations does not alter the above trend in growth time. The 6 = 0.03h simulation 
is run with a higher resolution than the 6 = 0.06h and 0.12h simulations, yet the scaling 
of t ,  with S is preserved. 

When S = 0.24h, t, comes later than expected from the above formula. (See figure 7. 
The dotted line, indicating ti + 545S/c, falls well below t, for 6 = 0.24h.) With a 6 of 
0.24h, the thickness of the shear layer is one sixth the periodic length. Zero mode 
formation and shear-layer growth occur when enough perpendicular motion is 
imparted to the shear layer for it to roll up. As the thickness of the shear layer is 
increased with respect to the wavelength of the rolling motion, restricted to be less than 
or equal to the periodic length of the simulation, the rolling motions must be of greater 
magnitude to distort the shear layer significantly. As the long delay in the 6 = 0.24h 
shear layer's evolution indicates, zero mode formation and disruption of the shear 



w 
w 
P 

~- A,,,, Vper t  t,c A, ~ A* - V I +  - VNf V I -  VN- s M & -  
C C C C P1 0.01 c A,,,, A,,,, 

4 1 0.00 1.9 0.94 13 8.3 9.0 0.9 (0.7) 1.0 (0.3) -1.0 (1.2) -1.0 (0.3) 
4 1 0.03 1.9 0.94 25 3.5 2.4 1.1 (0.4) 0.9 (0.3) - 

4 1 0.06 1.9 0.94 40 2.7 1.6 1.1 (0.3) 1.0 (0.2) - 

4 1 0.10 1.9 0.94 - 2.2 1.1 
4 1 0.12 1.9 0.94 72 2.1 0.94 1.2(0.3) 1.1 (0.3) - 

4 1 0.24 1.9 0.94 232 1.6 0.52 1.2 (0.2) 1.1 (0.7) - 
4 1 0.48 1.9 0.94 - 1.2 0.26 - 

4 1 0.96 1.9 0.94 - 0.99 0.12 - 

4 1 0.06 9.7 0.94 25 1.1 0.57 1.2(0.3) l.0(0.3) - 

4 1 0.06 1.7 0 75 2.4 2.2 1.0 (0.4) 0.9 (0.2) - 
8 1 0.06 2.0 2.99 112 1.6 0.67 3.1 (0.3) 2.9 (0.6) - 

4 10 0.06 1.7 0 43 2.6 2.5 1.9 (0.9) - 6.7 (0.7) - 6.4 (0.4) 
4 10 0.06 1.8 2.00 48 1.9 1.4 2.1 (0.7) 1.9 (1.0) -6.8 (0.7) -6.3 (0.4) 

- 

- 

- - - - 

- 

- 

- - - 

~ - - 

- 

- 

- 

- 

A,,,, amplitude of the pressure perturbation in the incident wave divided by po .  
A ,  amplitude of reflected wave of the initial response. 
A ,  amplitude of transmitted wave of the initial response. 
vr+ speed in the x-direction of inclined shock of plus mode. 
vN+ speed in the x-direction of nearly normal shock of plus mode. 
vr- speed in the x-direction of inclined shock of minus mode. 
vN- speed in the x-direction of nearly normal shock of minus mode. 
For 10: 1 density shear layers, c is the smaller sound speed. 

TABLE 1. Initial amplitudes and resonant velocities. Average velocities given, with fwhm in parentheses. 

P 
?J 
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layer are delayed and inhibited for shear layers with thicknesses (26) of one sixth the 
wavelength of the induced rolling motions (the periodic length). 

The onset of shear-layer growth, measured by t,, is not only a function of shear-layer 
thickness but is dependent on Mach number, perturbing amplitude, and perturbation 
velocity as well. There is not enough data (just that listed in table 1) to determine the 
exact dependence oft, on Mach number and perturbation amplitude, but the following 
exponents describe the observed trends. Comparing Mach 8 and Mach 4 shear layers 
with 6 = 0.06h, the growth time, 7, = t,- t i ,  is 3.3 times larger for the Mach 8 shear 
layer. If 7, is proportional to Ma,, aM is 1.7. If 7, is proportional to AapAt, where Apert 
is the amplitude of the pressure perturbation in the incident wave divided by po, aA is 
- 0.4. The onset of shear-layer growth is delayed when the perturbing wave moves at 
a velocity different to the velocity for the resonant mode. Comparing Mach 4, 
6 = 0.06h shear layers perturbed at the resonant velocity (the plus mode velocity) and at 
0 .94~  slower than the resonant velocity (corresponding to the zero mode velocity), the 
growth time of the non-resonant velocity perturbation is 63h/c, twice as large as the 
resonant perturbation growth time of 32h/c. The growth times for the 10: 1 density 
shear layers with 6 = 0.06h are 40h/c,,,,, and 45h/c,,,,,. This is roughly the same as 
the growth time for an equal density shear layer with the same 6 and Mach number 
(using M = v ~ ~ ~ ~ ~ ~ ~ ~ / c ~ ~ ~ ~ ~ ) .  Since these shear layers were not perturbed at the velocity 
of the dominant kink mode, the growth time for a 10: 1 density shear layer perturbed 
at the resonant velocity would be expected to be less than 40A/c,,,,,. 

The disruption of the jet and external gas boundary in numerical simulations of 
gaseous jets (Bassett & Woodward 1995) is influenced by shear-layer thickness, 
perturbation amplitude and Mach number in a manner similar to that noted above for 
shear-layer simulations. The time it takes nonlinear kink modes to disrupt the jet and 
external gas boundary decreases with decreasing Mach number and shear-layer 
thickness, and increasing perturbation amplitude. 

5. Velocities 
To calculate the velocities of the compression waves or shocks generated by the 

nonlinear kink instabilities, the positions of the compression maximum at y = h have 
been recorded at set time intervals (0.0 16h/c for the high-resolution simulations, 
0.032hlc for the low-resolution equal density simulations, and 0.02h/cS,,,, for the 
10: 1 density simulations). Evolution of the x-position of each compression maximum 
is then followed through time. The velocity of a compression maxima is calculated 
from its change in position over 11 time intervals. This procedure gives a resolution of 
0 .04~ in the velocities, owing to the grid resolution. Figure 8 shows an example of the 
computed velocities at y = f h as a function of time. The velocity of a kink instability 
is determined from histograms of the computed velocities with the average velocity of 
a peak in the histogram giving the kink mode velocity and the width of the peak 
indicating the velocity width of the resonance. Figure 9 shows examples of histograms 
and table 1 gives a summary of the velocities and widths for the dominant kink modes 
between times ti  and t,. 

The plus mode for the Mach 4, equal density, 6 = 0.03h shear layer has a peak in the 
velocity histogram at 1. l c  with full-width-at-half-maximum (fwhm) of 0 . 4 ~  for the 
inclined shock and a velocity of 0 . 9 ~  ( 0 . 3 ~  fwhm) for the nearly normal shock. The 
linear resonance velocity for the plus mode is 0.94~. As the width of the shear layer is 
increased the observed velocities increase. For a 6 = 0.24h shear layer, the velocity of 
the inclined shock is 1 . 2 ~  ( 0 . 2 ~  fwhm) and the velocity of the nearly normal shock is 
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FIGURE 8. Shock velocities. Plotted are the velocities of the compression maxima for a Mach 4, 8 = 
0.06h, equal density shear layer perturbed by the plus mode velocity. The size of each circle indicates 
the strength of the compression. Weak compressions are small dots and the largest circles are the 
strong shocks. 

l . lc ( 0 . 7 ~  fwhm). For a shear layer with 6 = 0, the velocities of both the excited 
travelling modes are the closest to that of the linear resonance velocities (1 .0~  and 
- 1 .Oc for the inclined shocks and 0 . 9 ~  and - 1 .Oc for the nearly normal shocks), but 
the spread in velocities is greater, (with a fwhm of up to 1.2~).  The zero mode that 
dominates these simulations after t ,  has symmetric shocks on either side of the shear 
layer moving apart with a velocity of 0 . 2 ~  or greater (fwhm of greater than 0 . 5 ~ ) .  

Similar to the Mach 4 velocities, the shocks from the Mach 8 plus mode move 
slightly above and below the predicted velocities from analytical theory with 3.lc 
(0 .3~  fwhm) and 2 . 9 ~  (0 .6~  fwhm) for the inclined and normal shocks, respectively. The 
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FIGURE 9. Compression maxima velocity histograms. The plots show histograms for five simulations at y = h and y = - A  (top and bottom) for the 
time between t, and t ,  (after the initial response to the initiation of shear-layer growth). The vertical dotted lines mark the minus, zero, and plus mode 
linear resonance velocities. 
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linear resonance velocity for the Mach 8 plus mode is 2.99~. For the case of unequal 
densities, before large growth of the shear layer begins, the weak plus mode and the 
dominant minus mode both have shocks which move just above and below the linear 
resonance velocities. The plus mode has a velocity of 2. 1csmal, (O.~C,,,,~ fwhm) for the 
inclined shock and 1 .9csmall (1 .Ocsmall fwhm) for the nearly normal shock, compared to 
a linear resonance velocity of 2.0Ocs,,,,. The minus mode has a velocity of - 6 . 7 ~ ~ ~ ~ ~ ~  
to - 6.8cS,,,, (O.~C,,,,, fwhm) for the inclined shock and - 6.3cS,,,, to - 6.4cS,,,, 
( 0 . 4 ~ ~ ~ ~ ~ ~  fwhm) for the nearly normal shock, compared to a linear resonance velocity 
of - 6 . 4 3 ~ ~ ~ ~ ~ ~ .  After the shear layer starts its large growth, the shocks still move at 
approximately the minus mode velocity, but the fwhm is greater than 3csma,,. 

6. Amplitude of initial response 
A quantity that has potential in comparing the results of these simulations with 

analytical theory is the initial amplitude of the reflected and transmitted waves in 
response to the perturbing sound wave (listed in table 1). A fit to these amplitudes is: 

8 -0.50 M -0.4 

A’==O.82(-) A ,  0.03h (T) , 

where Apert is the amplitude of the pressure perturbation in the incident wave divided 
by p,, M = vrelative/clarge, and A ,  and A ,  are the reflected and transmitted amplitudes, 
respectively. When compared to the observed simulation data, this estimate produces 
a 1 YO r.m.s. error for ARIApert as a function of 6 and a 10 % r.m.s. error for AT/Aper t  
as a function of 6. The exponents for M and Apert are merely descriptive of the trends 
observed as M or Apert are changed. 

7. Viscous shear layers 
To increase the confidence in the results from the numerical simulations, it would be 

desirable to use a Navier-Stokes code which employs physical viscosity instead of the 
numerical viscosities present in PPM to accomplish dissipation of poorly resolved 
waves or flow features. Unlike regular PPM, a Navier-Stokes version of PPM has no 
monotonicity constraints on the parabolic interpolated zone averages values, and it 
does not include any of the explicit dissipation mechanisms of standard PPM. The 
Navier-Stokes code has been compared to regular PPM in studies of compressible 
turbulence (Porter, Pouquet & Woodward 1992) and in the simulation of the merger 
of two strong vortices (Porter et al. 1990). Tests with a Navier-Stokes version of PPM 
which contained enough viscosity to resolve shocks (without Gibbs oscillations) with 
two-fold pressure jumps generated a heated shear layer (Mach 4, equal density case) 
that grew with time: 

112 

S = 12Ax(:) , (9) 

where Ax is the width of one computational zone. Putting t = t, in the above equation 
and using t ,  = tt+546S(t,)/c provides an estimate of the time it would take such a 
shear layer perturbed by an incident wave to generate a large amplitude nonlinear kink 
mode and disrupt the shear layer. To keep the size of the shear layer at disruption less 
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than one tenth of the periodic length (so that disruption will not be inhibited) requires, 
using the above estimate, a grid size of Ax < 0.001h, which is a resolution 7 times 
higher than the highest used in the present simulations. Such a resolution would require 
at least 40 million computational zones. Running the calculation out to the disruption 
of the shear layer would take a minimum of 5000/R hours, where R is the speed of the 
code on the machine used in gigaflops. 

8. Summary 
Numerical simulations of equal density shear layers are similar to equal density slip 

surface (zero thickness shear layer) simulations, except that a slip surface perturbed at 
the resonant velocity of the plus kink mode responds with both plus and minus 
travelling modes. The shear-layer simulations produce only the travelling mode which 
has its inclined shock on the same side of the layer as the perturbing wave, the plus 
mode. Shear layers which are nine computational zones wide, or greater, behave 
similarly. For shear layers perturbed by incident sound waves with a phase velocity 
corresponding to the velocity of the dominant travelling kink mode, the growth of the 
kink instabilities proceed at the same rate if the time is scaled as 6/c, where 6 is the half- 
width of the shear layer and c is the sound speed. As 6/h increases, the amplitudes of 
the initial reflected and transmitted waves, as well as the initial kink amplitudes, 
decrease. The shocks on either side of the shear layer generated by the kink modes 
separate from each other at a velocity of 0.1 c or greater. The velocity of the plus kink 
mode shocks increase slightly as the width of the initial shear-layer thickness is 
increased. 

In response to a perturbing sound wave, an equal density shear layer responds with 
the travelling kink mode which has its inclined shock on the same side as the perturbing 
wave. A shear layer with a 1O:l density contrast responds with the travelling kink 
mode that has its inclined shock in the denser fluid. The travelling mode grows in 
amplitude until enough of a disturbance on the shear layer has been created for it to 
roll up and rapidly grow in thickness. For the equal density case this bending of the 
shear layer excites the zero mode. The time it takes for this rapid growth to be initiated 
is proportional to the initial shear-layer thickness and increases for increasing Mach 
number or decreasing perturbation amplitude. For equal density shear layers perturbed 
at the travelling mode velocity the growth time is : 

where M is the relative velocity between the two fluids divided by the sound speed, and 
Apert is the amplitude of the pressure in the perturbing sound wave divided by the 
undisturbed pressure. (The M and Apert terms are descriptive of the trends observed for 
two different Mach numbers and perturbation amplitudes.) If the thickness of the shear 
layer is greater than about one sixth of the largest wavelength allowed for the rolling 
up motions created by the travelling modes then shear-layer growth is inhibited. 

The computer simulations were conducted on supercomputers at the Minnesota 
Supercomputer Center through grants of computer time from the Minnesota 
Supercomputer Institute and the Army High Performance Computing Research 
Center (AHPCRC). Data analysis and visualizations were done at the Army High 
Performance Computing Research Center which is supported through the Army 
Research Office and the University of Minnesota. Support for G.B. was provided in 
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part by NSF Grant AST8611404, DOE grant DE-FG02-87ER25035, a Department of 
Education National Needs Fellowship and an AHPCRC High Performance 
Computing Graduate Fellowship. 
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